EVALUATION OF CONTEMPORARY OXYGENATOR PERFORMANCE

ROGER STANZEL

CPC, PHD, ADJUNCT PROFESSOR OF MEDICINE, DALHOUSIE UNIVERSITY

MARK HENDERSON

CPC, CCP

BILL O'REILLY

CPC, CCP

Caring for You. Innovating for the World.®

- BACKGROUND/GOALS
- BENCH-TOP ANALYSIS
 - GME
- <u>CLINICAL ANALYSIS</u>
 - MULTICENTER EVALUATION OF CONTEMPORARY OXYGENATORS
 - POST-HOC ANALYSIS

BACKGROUND

- CARDIAC SURGERY IS COMPLEX
- OUTCOMES ARE THE SUM OF A LARGE NUMBER OF COMPONENTS, BUT GENERALLY SAFE...
 - <u>WHY?</u>
 - MANY TECHNOLOGICAL ADVANCEMENTS IN CARDIAC SURGERY
 - SURGICAL/ANESTHETIC PRACTICE
 - PERFUSION PRACTICE/EQUIPMENT
 - INCREASED BIOCOMPATIBILITY: CIRCUIT COATINGS, REDUCED SURFACE AREA
 - REDUCED PRIME: INTEGRATED ARTERIAL FILTERS, SMALLER OXYGENATORS

 QUALITY ASSURANCE INITIATIVE TO IDENTIFY THE BEST OXYGENATOR FOR OUR CARDIAC SURGERY PATIENTS

- <u>HOW:</u>
 - BENCH-TOP AND CLINICAL EVALUATIONS

SOURCE MATERIAL

- CLINICAL EVALUATION OF CONTEMPORARY OXYGENATORS", STANZEL AND HENDERSON, PERFUSION 2015
- "AN IN VITRO EVALUATION OF GASEOUS MICROEMBOLI HANDLING BY CONTEMPORARY VENOUS RESERVOIRS AND OXYGENATOR SYSTEMS USING EDAC", STANZEL AND HENDERSON, PERFUSION 2015
- "IS THERE A RELATIONSHIP BETWEEN PRESSURE GRADIENTS THROUGH CONTEMPORARY OXYGENATORS AND IMMUNE CELL PROLIFERATION DURING
 CARDIOPULMONARY BYPASS? A PILOT STUDY", STANZEL AND HENDERSON, JECT, 2017.
- **"A CLINICAL EVALUATION OF CONTEMPORARY OXYGENATORS: A MULTI-CENTRE EVALUATION"**, STANZEL, HENDERSON AND O'REILLY. IN PREPARATION FOR SUBMISSION.

- BACKGROUND/GOALS
- <u>BENCH-TOP ANALYSIS</u>
 - GME
- <u>CLINICAL ANALYSIS</u>
 - MULTICENTER EVALUATION OF CONTEMPORARY OXYGENATORS
 - POST-HOC ANALYSIS

HARMS OF GASEOUS MICRO EMBOLI

- CPB GENERATES GME
 - CAN OBSTRUCT END-ORGAN PERFUSION
- CEREBRAL ISCHEMIA?
 - POST OPERATIVE DYSFUNCTION, TRANSIENT TO PERMANENT
- GOALS:
 - IDENTIFY OPTIMUM CPB PRODUCTS TO PROTECT PATIENTS FROM GME:
 - VENOUS RESERVOIR
 - OXYGENATOR
 - SYSTEM
- <u>EMBOLI DETECTION AND CLASSIFICATION (EDAC[™])</u>:
 - EVALUATE VARIOUS SIZES OF GME
 - EVALUATE OVERALL GME LOAD

PRODUCTS:

- SORIN SYNTHESIS
- SORIN INSPIRE (6 AND 8)
- TERUMO FX (15 AND 25)
- MAQUET QUADROX-I

• PARAMETERS:

- <u>BLOOD</u>:
 - BOVINE
 - 15 L
 - HCT 30 ± 2
 - BE 0 ± 2
 - PH 7.1 7.3

• OXYGENATOR SET UP:

- FLUSHED (3 LPM CO₂ FOR 5 MIN) AND PRIMED AS PER MANUFACTURERS' INSTRUCTIONS
- 4 LPM FLOW
- VENOUS RESERVOIR AT MINIMUM
 OPERATING VOLUME
- RUN AS PER MANUFACTURERS'
 INSTRUCTIONS
- AIR INTRODUCTION:
 - 30 SECONDS BASELINE
 - 1 MINUTE OF ROOM AIR (100 CC OVER 1 MINUTE)
- AFTER COMPLETION:
 - CIRCUIT DE-AIRED PRIOR TO NEXT
 ANALYSIS
 - ONE OF EACH OXYGENATORS
 - 2 RUNS PER OXYGENATOR

• <u>SET-UP:</u>

<u>GME DETECTION</u>

- <u>CHANNEL 1:</u> DISTAL VENOUS RESERVOIR
- <u>CHANNEL 2:</u> DISTAL ARTERIAL ROLLER
 PUMP
- <u>CHANNEL 3:</u> DISTAL OXYGENATOR

• **PROCEDURE:**

- BASELINE GME ESTABLISHED (<10 EMBOLI/6 SECONDS)
- <u>AIR INJECTION</u>
 - 100 CC ROOM AIR OVER 1
 MINUTE THROUGH
 STOPCOCK IN VENOUS
 LINE
- GME DATA RECORDED DURING AIR
 INJECTION THEN FOLLOWING 3 MINUTES

Reservoir:

Oxygenator:

Total System:

<u>CONCLUSIONS:</u>

- VARYING ABILITY TO REMOVE GME
 - <u>RESERVOIR:</u> MAQUET SUPERIOR
 - OXYGENATOR: COMPARABLE, EXCEPT MAQUET WITH 100 MM+ GME
 - <u>SYSTEM</u>: SYNTHESIS INFERIOR
- NEWER TECHNOLOGY HAS IMPROVED GME HANDLING

- BACKGROUND/GOALS
- BENCH-TOP ANALYSIS
 - GME
- <u>CLINICAL ANALYSIS</u>
 - MULTICENTER EVALUATION OF CONTEMPORARY OXYGENATORS
 - POST-HOC ANALYSIS

- IN 2015, HALIFAX CONDUCTED SMALL CLINICAL EVALUATION OF CURRENT OXYGENATOR AND NEW OXYGENATORS
- <u>METRICS</u>
 - PRIME
 - GAS EXCHANGE
 - PRESSURE GRADIENTS
 - EFFECTS ON BLOOD ELEMENTS
- SIGNIFICANT DIFFERENCES
- ARE THESE REPRODUCIBLE?
 - SMALL MULTICENTRE EVALUATION USING THE SAME PROTOCOL
 - <u>HYPOTHESIS</u>:
 - DATA FROM OTHER CENTERS AGREE WITH INITIAL EVALUATION

MULTICENTER CLINICAL EVALUATION

PARTICIPATING CENTERS: ٠

- HALIFAX
- NEW BRUNSWICK
- LONDON

OXYGENATORS:

- FX25
- INSPIRE-8
- QUADROX-I
- N = 100

• **STATISTICS**

- CATEGORICAL DATA
 - FISCHER'S EXACT TEST
- QUANTITATIVE DATA
 - ANOVA WITH BONFERRONI CORRECTION

MEMBRAN	IE OXYGENA	TOR AU	JDIT		MEMBRANE:		
Research C				PERFUSIONIST:			
Pt Study No]	SURGEON/ANES:			
				•	PUMP TIME:		
					XC TIME		
					PROCEDURE:		
TIME	SAMPLE:	RBC	WBC	Neut	PLT	HGB	HCT
	PRE CPB:						
	XC REMOVAL:						

NE:			
IONIST:			
N/ANES:			Main Pu
ME:			TRANSF
URE:			Ht
	HGB	HCT	Wt
			BSA
			GENDER

Main Pump type	
TRANSFUSED BLOOD	(UNITS

Pt Sticker

		Blood Analyzer		Device		Blood Analyzer			Device								
		Arterial O ₂ Content		Arterial		Venous O ₂ Content			Venous		CO ₂ Transfer			Pressure			
ON CPB	ART TEMP	HgB	SaO ₂	PaO ₂	HgB	8a0 ₂	8vO ₂	HgB	PvO ₂	HgB	SvO ₂	BLOOD FLOW	PaCO ₂	GAS FLOW	FIO ₂	PRE	POST
SAMPLE 1																	
SAMPLE 2																	
SAMPLE 3																	
SAMPLE 4																	
SAMPLE 5																	
SAMPLE 6																	
SAMPLE 7																	
SAMPLE 8																	

AGE

NO DIFFERENCES IN PATIENT OR CASE DEMOGRAPHICS

O₂ Transfer as a Function of FiO₂

Inspire_1 had lowest O₂ transfer (except FX25)

Inspire_2 required lower gas flow than Quadrox_1 to achieve 40 mmHg PaCO₂

Inspire > FX25 > Quadrox

HEMATOLOGY

- <u>CORE LABORATORY SERVICES (QEII)</u>
- <u>SAMPLES</u>:
 - POST-HEPARIN, PRE-CPB (BASELINE)
 - POST-CROSS CLAMP
- PARAMETERS:
 - HEMOGLOBIN, PLATELETS, WHITE BLOOD CELLS
- EVALUATION:
 - NORMALIZED TO 'POST-HEPARIN' VALUE
 - % BASELINE

MULTICENTER CLINICAL EVALUATION

HgB Post Cross Clamp

Inspire_1 < FX25_1

FX25_1 had greatest Plt retention

<u>CONCLUSIONS</u>

OBSERVED UNEXPECTED DIFFERENCES TO INITIAL EVALUATION

- GAS EXCHANGE
- HGB
- PLT
- WBC

• <u>WHX</u>5

- DIFFERENCES IN CLINICAL PRACTICE?
- WHAT ARE THEY ...?

- BACKGROUND/GOALS
- BENCH-TOP ANALYSIS
 - GME
- <u>CLINICAL ANALYSIS</u>
 - MULTICENTER EVALUATION OF CONTEMPORARY OXYGENATORS
 - POST-HOC ANALYSIS

 τ > 75 dynes/cm²: Leukocytes

Sublytic granule release, adhesion, aggregation and phagocytosis

• SHEAR STRESS IN AN OXYGENATOR (T) = $\{(\eta \times Q_{blood} \times \Delta P)/(V_{prime})\}$

<u>Where:</u> η = absolute viscosity

 Q_{blood} = blood flow

 ΔP = pressure drop

V_{prime} = prime volume

τ > 75 dynes/cm²: Leukocytes

Sublytic granule release, adhesion, aggregation and phagocytosis

τ > 75 dynes/cm²: Leukocytes

Sublytic granule release, adhesion, aggregation and phagocytosis

High pressure-drop oxygenators may be pro-inflammatory?

C

UNDER PRESSURE?

- NO CORRELATION BETWEEN PRESSURE AND IMMUNE CELL PROLIFERATION ON CPB
- <u>CONCLUSION:</u>

• S

- OTHER FACTORS RESPONSIBLE
- COATINGS
- OXYGENATOR DESIGN

CONCLUSIONS

- MODERN TECHNOLOGY HAVE IMPROVED GME REMOVAL
- DIFFERENCES IN CLINICAL PERFORMANCE
- GAS EXCHANGE, CBC
- PRESSURE DROP NOT RESPONSIBLE FOR DIFFERENCES IN IMMUNE CELL INCREASES

FUTURE GOALS

- ANSWER THE QUESTION: WHY THE DIFFERENCES IN CLINICAL PERFORMANCE?
 - INCREASING NUMBER OF PARTICIPATING CENTERS
- ONGOING QUALITY ASSURANCE
 - TRACK OXYGENATOR PERFORMANCE
 - ESTABLISH A BASELINE AND ASSESS IMPACTS OF CHANGE IN PRACTICE
- RE-INVIGORATE INTEREST IN PERFUSION RESEARCH

THANK YOU

- CSCP CMOC
- BILL HILL, LANCE MITCHELL AND NSHA PERFUSION STAFF
- CHRIS MACKAY AND LHSC PERFUSION STAFF
- HNH PERFUSION STAFF